BPT's White paper
  • ๐Ÿ‡ฐ๐Ÿ‡ทKOREAN
    • โ„น๏ธIntroducing โ€˜Best Patentโ€™
    • ๐Ÿ“ˆ๋™ํ–ฅ ๋ฐ ์ถ”์„ธ
    • ๐Ÿ’น์‹œ์žฅ์˜ ๋ฌธ์ œ์  ๋ฐ ํ•ด๊ฒฐ ๋ฐฉ์•ˆ
      • ์‹œ์žฅ์˜ ๋ฌธ์ œ์ 
      • ํ•ด๊ฒฐ ๋ฐฉ์•ˆ
    • ๐Ÿ…ฑ๏ธ์‚ฌ์—… ํ•ต์‹ฌ ์—ญ๋Ÿ‰
    • โœˆ๏ธ์‚ฌ์—… ์ถ”์ง„ ๊ณ„ํš
      • ๊ตฌํ˜„ ๊ณ„ํš(๋‚ด์—ญ)
        • (1)BPT ํ”Œ๋žซํผ
        • (2)์•„์ด๋””์–ด ์ƒ์‚ฐ์ž
        • (3)ํŠนํ—ˆ (๋“ฑ๋ก/์ถœ์›)์ž
        • (4) ์•„์ด๋””์–ด ๊ณต๋ชจ
        • (5) ํŠนํ—ˆ ๋ช…์„ธ์„œ์˜ 3D ์ด๋ฏธ์ง€ NFTํ™” ๊ธฐ์ˆ 
        • (6) AI ์ ์šฉ ๊ธฐ์ˆ 
      • ์‚ฌ์—…ํ™” ์ „๋žต
      • ๊ธฐ๋Œ€ ํšจ๊ณผ
  • ๐Ÿง‘โ€๐Ÿ’ปBPT TECH
    • BPT ๋ธ”๋ก์ฒด์ธ ํ”Œ๋žซํผ
    • BPT ํ•ฉ์˜ ์•Œ๊ณ ๋ฆฌ์ฆ˜
    • BPT ์‹œ์Šคํ…œ ์•„ํ‚คํ…์ฒ˜
    • BPT ๋„คํŠธ์›Œํฌ ๊ตฌ์กฐ ๋ฐ ์•Œ๊ณ ๋ฆฌ์ฆ˜
    • BPT ์Šค๋งˆํŠธ ์ปจํŠธ๋ž™ํŠธ
    • BPT AI ๊ฐœ์š”
    • BPT AI ๋”ฅ๋Ÿฌ๋‹ ๊ตฌ์กฐ, ํ”„๋ ˆ์ž„์›Œํฌ
    • BPT ์ž์—ฐ์–ด ์ฒ˜๋ฆฌ ๋ฐ ์ดํ•ด
    • BPT AI ๊ฑฐ๋ฒ„๋„Œ์Šค
  • ๐Ÿช™ํ† ํฐ ์šด์˜ ๊ณ„ํš
  • ๐Ÿ“‚Tokenomics
  • ๐Ÿ—บ๏ธRoadmap
  • ๐Ÿ…ฐ๏ธAbout
  • ๐Ÿ‡บ๐Ÿ‡ฒENGLISH
    • โ„น๏ธIntroducing โ€˜Best Patentโ€™
    • ๐Ÿ“ˆTrends and Momentums
    • ๐Ÿ’นMarketโ€™s Pain Points and Solutions
      • Marketโ€™s Pain Point
      • Solutions
    • ๐Ÿ…ฑ๏ธBusiness Core Competencies
    • โœˆ๏ธBusiness Promotion Plan
      • Implementation Plan (Details)
        • (1) BPT Platform
        • (2) Ideas producers
        • (3) Patent (Registrant / Applicant) producers
        • (4) Idea Competition
        • (5) NFTization technology of 3D0-imges in patent specifications
        • (6) AI-enabled technologies
      • Commercialization Strategy
      • Expected Effects
  • ๐Ÿง‘โ€๐Ÿ’ปBPT TECH
    • BPT Blockchain Platform
    • BPT Consensus Algorithm
    • BPT System Architecture
    • BPT Network Structure and Algorithm
    • BPT smart contracts
    • BPT AI Concept
    • BPT AI Deep Learning Structure, Framework
    • BPT Natural Language Processing and Understanding
    • BPT AI Governance
  • ๐Ÿช™Token Operation Plan
  • ๐Ÿ“‚Tokenomics
  • ๐Ÿ—บ๏ธRoadmap
  • ๐Ÿ…ฐ๏ธAbout
Powered by GitBook
On this page
  1. BPT TECH

BPT Natural Language Processing and Understanding

Introducing BPT Natural Language Processing (NLP) services requires a variety of development environments. Below is a description of the configuration of the natural language logic we plan to introduce to the BPT Platform

MLlib (Machine Learning Library): It is the default machine learning library in Spark, providing a variety of machine learning algorithms and tools. It can perform tasks such as regression, classification, clustering, collaborative filtering, dimensionality reduction, and more. MLlib is implemented on top of RDD, which allows you to perform machine learning tasks on large amounts of data in Spark's distributed environment.

GraphX: It is a library for image analysis that provides various algorithms for image structured data. It can run graph algorithms such as shortest path, PageRank, and connectivity analysis

Spark SQL: It is a module for structured data processing, allowing the processing of data in a style similar to SQL queries. It provides a Data Frame API to manipulate data and execute SQL queries.

Streaming: It is a module for real-time data streaming processing that enables the real-time processing of data streams. It supports structural streaming and can process large amounts of real-time data.

PreviousBPT AI Deep Learning Structure, FrameworkNextBPT AI Governance

Last updated 1 year ago

๐Ÿง‘โ€๐Ÿ’ป